Track MSP Progress


Narrow the objectives list with the following filters. Leave filters empty to view all results.
Select result type:

Tracker results - long format


chaparral

Goal: Maintain, enhance and restore chaparral on Conserved Lands in the MSPA that supports or has the potential to support VF species (i.e., Del Mar manzanita, felt-leaved monardella, Lakeside ceanothus, Nuttall's scrub oak, Otay manzanita, Rainbow manzanita, wart-stemmed ceanothus, California newt, Bell's sage sparrow) and to incidentally benefit a diverse array of other species (e.g., Encinitas baccharis, Jennifer's monardella, Orcutt's hazardia, mountain lion) so that the vegetation community has high ecological integrity, and these species are resilient to environmental stochasticity, catastrophic disturbances and threats, such as very large wildfires and prolonged droughts, and will be likely to persist over the long term (>100 years).

Regional NFO 2017, 2018, 2019, 2020, 2021
MON-DEV-MAP CHAPAR-2

Management units: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

In 2017, develop a landscape-scale map classifying ecological integrity of shrublands across the MSPA based upon shrub cover and density and invasive nonnative annual grasses using remote imagery (e.g., satellite and high resolution aerial imagery, LIDAR) and vegetation data collected during 2015-2016 California gnatcatcher regional and postfire monitoring. Verify and revise the mapping as needed using field data collected in 2018-2020 as part of the Chaparral, Coastal Sage Scrub and Grassland Vegetation Monitoring Program and from related VF species monitoring (e.g., California gnatcatcher regional and postfire monitoring). Revise the integrity classification map as needed to respond to changes in vegetation based upon wildfires, drought or other large-scale disturbances.

Action Statement Action status Projects
DEV-1 Submit project metadata, datasets, analyses, and Ecological Integrity Classification Map to the MSP web portal In progress 2017-2019 Developing a Map of Ecological Integrity Using Remote Sensing
Criteria Deadline year
Ecological Integrity Map created in 2017 and updated as needed 2018-2021 2021
Threat Name Threat Code
Altered fire regimeALTFIR
Climate changeCLICHN
Invasive plantsINVPLA
Loss of ecological integrityECOINT
Code Obj. code Statement
CHAPAR-1 MON-PRP-MONPL In 2017, prepare a long-term monitoring plan for the mosaic of chaparral, coastal sage scrub and grassland vegetation communities that focuses on tracking community composition, structure and ecological integrity over time in relation to climate (i.e., drought) and disturbance from fire. The monitoring plan should include a conceptual model, specific monitoring questions, the sampling frame within the MSPA, monitoring methods, a statistically valid sampling design, permanent sampling locations, timeline, and standardized protocols. Use the landscape-scale ecological integrity classification map to develop a sampling frame and the sampling design with permanent sampling plots spanning north to south and east to west environmental gradients across the MSPA. Evaluate how the vegetation integrity classes characterize other aspects of the ecosystem by integrating other types of monitoring into the long-term sampling plots, such as abiotic element monitoring (e.g., automated weather stations and soil sensors, GIS-data layers), ecological integrity monitoring (e.g., plant and animal communities, ecological processes), MSP VF species monitoring, and threats monitoring (e.g., fire, climate change, invasive plants). A draft monitoring plan should be prepared in 2017, tested in the field with a pilot study in 2018, and finalized by 2019.
CHAPAR-3 MON-IMP-MONPL In 2018, conduct pilot monitoring to collect data and develop any recommendations for finalizing the vegetation monitoring plan. In 2019 to 2021, implement the final Chaparral, Coastal Sage Scrub and Grassland Vegetation Monitoring Plan.
POLPOL-1 MON-IMP-MONPL In 2020, implement regional and subregional California gnatcatcher monitoring initiated in 2016 to determine the percent area occupied (PAO) by California gnatcatcher in modeled high and very high suitability habitat on Conserved Lands and military lands in the MSPA as part of a larger monitoring program for southern California. Over the next 15 years, determine trends in California gnatcatcher PAO and in their colonization and extinction rates and be able to detect at least 30% change in PAO. Identify associations between habitat and threat correlates with gnatcatcher PAO and with extinction and colonization rates and develop biologically meaningful thresholds for management and to specify management criteria and recommendations.
POLPOL-2 MON-RES-SPEC In 2020, implement California gnatcatcher postfire monitoring conducted in 2015 and 2015 to: determine whether there has been further recovery of California gnatcatchers in areas burned in 2003, 2007 and 2014 (i.e., PAO>10%); evaluate if there is a difference in PAO between areas burned in 2003, 2007 and 2014; investigate the relationship between gnatcatcher PAO and vegetation composition, cover and structure; and evaluate the composition, cover and structure of coastal sage scrub in areas with different fire frequencies and patterns of vegetation recovery based upon time since fire, spatial distribution, previous land use, and environmental conditions. Use the regional gnatcatcher and vegetation monitoring protocols to monitor postfire recovery of gnatcatchers and vegetation at sampling points surveyed in 2016. Analyze gnatcatcher and vegetation data to develop overall and site specific vegetation management recommendations for postfire recovery of coastal sage scrub vegetation to support California gnatcatchers.