

GENETIC CONNECTIVITY OF THE COASTAL CACTUS WREN

Kelly Barr Barbara Kus Kris Preston Amy Vandergast

U.S. Department of the Interior U.S. Geological Survey

ACKNOWLEDGMENTS

NROC:

K. Moore & D. Kamada

USGS:

S. Howell, A. Houston, M. Madden-Smith, L. Allen, A. Gallagher, P.J. Falatek, K. Allen

Overview

- Background
- Study Design
- Results & Analyses
- What's Next?

Connectivity Monitoring Strategic Plan For the San Diego Preserve System

Prepared for the San Diego Environmental Mitigation Program Working Group

January 11, 2011

Goal:

To identify and inform adaptive management actions to *maintain, restore or improve connectivity* between conserved core areas, and thereby:

 ensure persistence of species across preserve system

preserve ecosystem
function across the
landscape

What is the functional connectivity among core areas for

- large animals
- small animals

• birds

Priority bird species:

- Coastal Cactus Wren
- California Gnatcatcher
- Least Bell's Vireo
- SW Willow Flycatcher

Why Study Connectivity in Cactus Wrens?

- limited strictly to cactus habitat
- cactus highly fragmented by development & fire
- connectivity maintains genetic diversity within fragments & ensures recolonization after local extinctions
- understanding current connectivity would inform cactus restoration
 - How do Cactus Wrens utilize the landscape for movement?
 - identify connectivity trouble spots

Genetic Approach

- genetic data provide information on gene flow (movement + successful breeding)
 - Dispersal = just movement
- determine natural and anthropogenic barriers that impede gene flow
- measures genetic diversity (the raw material for adaptation)

Study Goals:

- 1. Are there limitations to gene flow?
- 2. Identify clusters (populations or gene pools).
- 3. What is the genetic diversity within clusters?

Exhaustive sampling

- USFWS cactus mapping
- SD Bird Atlas
- CACW working group

Partners & cooperators

- USFWS
- SDNWR
- CDFG
- ICR Safari Park
- CBI
- TNC
- AECOM
- Fallbrook NWC
- MCB Camp Pendleton
- SD Audobon Society
- Sweetwater Authority
- SDMMP
- San Dieguito River Valley Conservancy

≥USGS

420 TOTAL BIRDS SAMPLED 165 INDIVDUALS ANALYZED

- 1 NESTLING
- 1-2 ADULTS

Nestling feathers

Toenail clip

Diploid

DiploidLocus (loci)

- Diploid
- Locus (loci)
- Alleles

- Diploid
- Locus (loci)
- Alleles
- Homozygous:Allele 1 = Allele 2
- Heterozygous:
 - Allele 1 ≠ Allele 2

Types of Markers...

- DNA Sequence
- SNPs
- Microsatellites
 - High mutation rate = high polymorphism
 - Selectively neutral
 - Using many markers covers more genome
 - 20 microsatellites analyzed here

Classes of Analyses

Cluster analyses

- Individual-based
- Infers number of clusters (K)
- Multiple methods used to confirm results
 - > STRUCTURE
 - GENELAND
- Landscape analyses
 - Groups of individuals
 - Genetic distance versus geographic distance
 - Intervening habitat
- Genetic diversity within clusters

STRUCTURE

Individual 1

Individual 2

Individual 3

Individual 4

K = 1

≥USGS

STRUCTURE

Individual 1

Individual 2

Individual 3

Individual 4

K = 2

STRUCTURE

Individual 2

Individual 3

Individual 4

K = 2Admixture:

- Recent gene flow
- Common ancestry

K = 4

K = 3

GENELAND

- Individual-based cluster analysis
- Considers a spatial component

- Individual-based cluster analysis
- Considers a spatial component

Landscape Perspective?

• *F*_{ST}

- Genetic differentiation between groups
- Scales 0 to 1
 - 0 = no genetic differences

$F_{\rm ST} = 0.019$ to 0.2

$F_{\rm ST} = 0.019$ to 0.2

P < 0.001

Does anything else explain differentiation other than geographic distance?

Does anything else explain differentiation other than geographic distance?

Pairwise matrix 0 = no fragmentation 1 = fragmented

Pairwise matrix 0 = no fragmentation 1 = fragmentedDifferentiation versus geo dist: p < 0.001

Does anything else explain differentiation other than geographic distance?

Pairwise matrix 0 = no fragmentation 1 = fragmented

Differentiation versus geo dist: p < 0.001

Differentiation versus fragmentation: p < 0.001

Does anything else explain differentiation other than geographic distance?

Pairwise matrix 0 = no fragmentation 1 = fragmented

Differentiation versus geo dist: p < 0.001

Differentiation versus fragmentation: p < 0.001

Differentiation vs. frag. (controlling for geo dist): p = 0.0001

Cluster	Samples
OC-PEN	80
PASQUAL	37
SD	32
ΟΤΑΥ	16

≥USGS

Cluster	Samples	Η _E	A
OC-PEN	80	0.64	5.5
			0.0
PASQUAL	37	0.66	5.1
SD	32	0.63	5.4
ΟΤΑΥ	16	0.65	5.0

Cluster	Samples	Η _E	A	Ne
OC-PEN	80	0.64	5.5	94 (68 - 129)
PASQUAL	37	0.66	5.1	52 (33 - 84)
SD	32	0.63	54	59 (40 - 91)
ΟΤΑΥ	16	0.65	5.0	34 (18 - 92)

Ne << Nc

Cluster	Samples	Η _E	A	Ne
OC-PEN*	80	0.64	5.5	94 (68 - 129)
PASQUAL*	37	0.66	5.1	52 (33 - 84)
SD	32	0.63	54	59 (40 - 91)
50	52	0.05	5.4	39 (40 - 91)
OTAY*	16	0.65	5.0	34 (18 - 92)

Bottleneck*

≥USGS

Cluster	Samples	Η _E	A	Ne
	80	0.64	5 5	04 (69 120)
OC-FEN	00	0.04	5.5	94 (00 - 129)
PASQUAL*	37	0.66	5.1	52 (33 - 84)
				
SD	32	0.63	5.4	59 (40 - 91)
OTAY*	16	0.65	5.0	34 (18 - 92)

NEXT?

- Resighting study
- Expanding sampling into San Bernardino, LA, Ventura, and additional Orange County sites
 CDFG
- Cactus habitat model & deeper landscape analyses
- Individual-based genetic distances
- Museum samples
- California Gnatcatcher genetic connectivity

