Ideas on Developing a Coastal Sage Scrub, Chaparral and Grassland Monitoring Program for Western San Diego County

> Inter-Agency Sub-Committee Meeting -Regional Vegetation Monitoring May 4, 2017

Kris Preston & Yvonne Moore

an Diego Management Monitoring Program

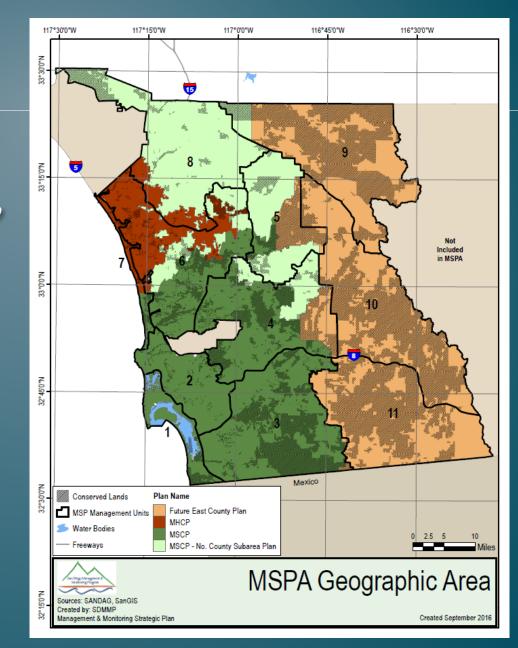
Photo Patricia Gordon-Reedy

MSP Roadmap

Management and Monitoring Strategic Plan for Conserved Lands in Western San Diego County: A Strategic Habitat Conservation Roadmap

Vol 1: Overview and Approach Vol 2: Goals and Objectives Vol 3: Supporting Documents

2A - Regional Preserve System

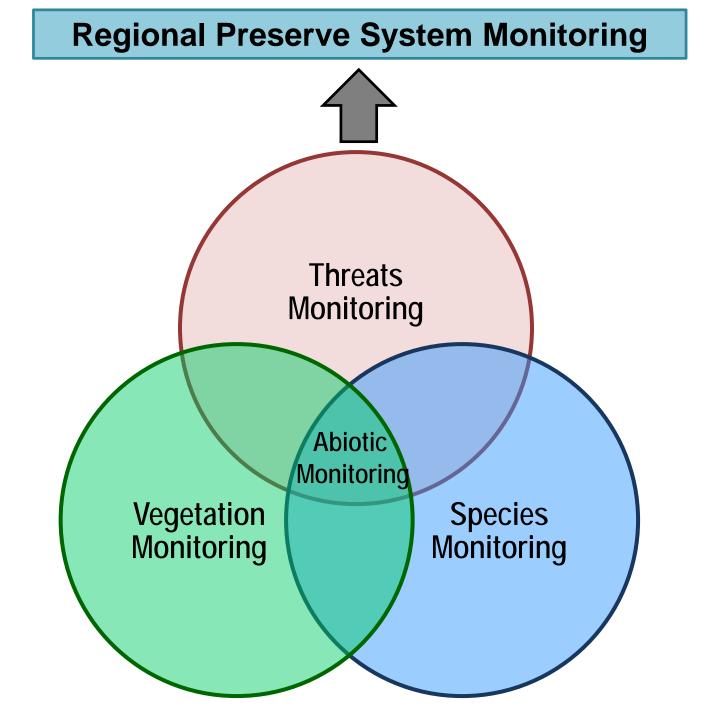

- 2B Threats/Stressors
- 2C Vegetation
- 2D Species

https://portal.SDMMP.com

F

MSP Roadmap Area

- > MSCP, MHCP & NCP
- MSPA aka "MSP Area"
- Western San Diego County
- Only willing partners on Conserved Lands
- 11 Management Units



WHY MONITOR?

Success in meeting management goals & objectives

- Species/vegetation/ecosystem status & trends
 Track response to threats, habitat & environmental conditions to inform management
- Effects of management

Photo Emily Perkins

ORGANIZING PRINCIPLE

Ecological integrity –

The ability of an ecological system to support & maintain a community of organisms that has species composition, diversity & functional organization comparable to those of natural habitats within a region Karr & Dudley 1981, Parrish et al. 2003

RELEVANCE TO MANAGEMENT

★ Ecological thresholds = tipping points
 > small change in driver →large change in environmental response
 ★ Preventing shift to more degraded state = more effective & cost efficient than trying to recover degraded ecosystem

Photo Patricia Gordon-Reedy

CSS & CHAPARRAL SYSTEMS

Conceptual Model:

Primary threats =

Altered fire regime

Invasive plants

Climate change (e.g., drought)

Photo Patricia Gordon-Reedy

CSS & CHAPARRAL MONITORING APPROACH

Determine status & ecological integrity of CSS & chaparral systems in MSPA & whether these are changing in response to threats & environmental conditions

Approach is based on synthesizing & analyzing data from species, veg, threat & abiotic monitoring

Photo Patricia Gordon-Reedy

MANAGEMENT GOAL

Maintain, enhance & restore CSS (or chaparral) in the MSPA that supports or has potential to support Vegetation Focus species & to incidentally benefit a diverse array of other species so that the vegetation community has high ecological integrity & these species are resilient to environmental stochasticity, catastrophic disturbances & threats, & will be likely to persist over the long-term (>100 years)

MONITORING GOAL

Provide monitoring to detect changes in CSS & chaparral vegetation communities impacted by fire, drought & invasive plants & use this information to guide management to maintain, enhance or restore ecological integrity across the MSPA.

Regional Preserve System Monitoring Questions

What is the ecological integrity of the MSPA preserve system, is it changing over time & why? (Meta-analysis of datasets in MSP Web Portal)

MSP Species Monitoring MSP Vegetation **Threats Monitoring** Questions **Monitoring Questions** Questions What is the distribution, What is the distribution & status of MSP ✤ What are the types & species in the MSPA & are they changing composition, structure & levels of threats in the over time? integrity of vegetation MSPA preserve system, communities in the MSPA & are they changing over ✤ What threat, habitat & abiotic time & why? are these changing over characteristics are associated with time? changes in MSP species distribution & What are BMPs for status? ✤ What threats & abiotic factors managing threats? are associated with changes Research oriented questions (e.g., ✤ Is management effective in vegetation community connectivity & genetic diversity, at reducing threats? attributes? demographics) to address critical uncertainties important for management. ✤ What are BMPs for managing threats? Abiotic Questions ✤ What are BMPs for managing threats & enhancing species' populations? ✤ Is management effective at ✤ Are abiotic elements in reducing threats & enhancing ✤ Is management effective at reducing the MSPA changing over vegetation communities? threats & enhancing species populations? time & why?

CSS & CHAPARRAL MONITORING OBJECTIVES

1) Map the ecological integrity of CSS & chaparral across the MSPA & track changes in integrity over time in response to fire, drought & other threats to identify sites at integrity thresholds requiring management actions.

Fuels Model Mapping (Technosylva 2014)

CSS & CHAPARRAL MONITORING OBJECTIVES

2) Monitor to inform management & ensure X acres of CSS (or chaprral) are maintained in the high ecological integrity class & X acres are restored from low or moderate to high integrity CSS (or chaparral) at important locations for MSP species and/or connectivity.

Photo Kris Preston

CSS & CHAPARRAL MONITORING OBJECTIVES

3) Monitor CSS, chaparral & converted grassland at reference sites along environmental gradients in the MSPA to correlate vegetation integrity metrics with species composition, structure, diversity & ecosystem fxn. Track responses to changing threat & environmental conditions to better understand system & inform management of non reference sites.

WHAT HAVE WE LEARNED?

CSS, chaparral & grassland vegetation

- Evaluated multiple approaches (field & landscapescale) with recommendations to improve
- Developed vegetation classification for mapping
- Determined efficacy of field methods & sources of variability
- Initiated conceptual models, questions & objectives
- ✤ Power analyses → sample sizes to detect specified change in vegetation/species cover

WHAT HAVE WE LEARNED?

Index of Biological Integrity (Diffendorfer et al. 2007):

- IBI for CSS measure biodiversity along disturbance gradient
- Sampled ants, herps, birds, small mammals & veg
- Gradient of disturbance = % NNG cover
- No single taxon, sp, or community measure = good indicator
- Turnover in spp along gradient
- Multi-taxa IBI > sensitivity than % NNG cover & can decompose

CSS & CHAPARRAL VEG MONITORING APPROACH

Ecological Integrity of Vegetation:

Integrity classes defined by % cover & density of shrubs, % cover of NNG as determined by range of variation in MSPA

Model integrity classes across landscape & verify in field

NNG serves as surrogate for multi-taxa IBI, but need to validate over time with reference sites

SPECIES MONITORING INSIGHTS INTO CSS SYSTEM

Ex: CAGN Fire Study obj

- Determine CAGN PAO & recovery from 2003, 2007 & 2014 fires
- Identify relation between CAGN PAO & veg covariates
- Determine recovery of CSS with different fire histories, time since fire, spatial distribution & environmental conditions
- Use CSS veg data to develop landscape-scale ecological integrity maps over time