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Abstract
The arroyo southwestern toad is a specialized and federally endangered amphibian 
endemic to the coastal plains and mountains of central and southern California and 
northwestern Baja California. It is largely unknown how long these toads live in natu-
ral systems, how their population demographics vary across occupied drainages, and 
how hydrology affects age structure. We used skeletochronology to estimate the 
ages of adult arroyo toads in seven occupied drainages with varying surface water 
hydrology in southern California. We processed 179 adult toads with age estimates 
between 1 and 6 years. Comparisons between skeletochronological ages and known 
ages of PIT tagged toads showed that skeletochronology likely underestimated toad 
age by up to 2 years, indicating they may live to 7 or 8 years, but nonetheless major 
patterns were evident. Arroyo toads showed sexual size dimorphism with adult fe-
males reaching a maximum size of 12 mm greater than males. Population age struc-
ture varied among the sites. Age structure at sites with seasonally predictable surface 
water was biased toward younger individuals, which indicated stable recruitment for 
these populations. Age structures at the ephemeral sites were biased toward older 
individuals with cohorts roughly corresponding to higher rainfall years. These popu-
lations are driven by surface water availability, a stochastic process, and thus more 
unstable. Based on our estimates of toad ages, climate predictions of extreme and 
prolonged drought events could mean that the number of consecutive dry years 
could surpass the maximum life span of toads making them vulnerable to extirpation, 
especially in ephemeral freshwater systems. Understanding the relationship between 
population demographics and hydrology is essential for predicting species resilience 
to projected changes in weather and rainfall patterns. The arroyo toad serves as a 
model for understanding potential responses to climatic and hydrologic changes in 
Mediterranean stream systems. We recommend development of adaptive manage-
ment strategies to address these threats.
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1  | INTRODUC TION

Amphibians are declining rapidly on national and global scales; how-
ever, some species are declining more rapidly than others (Adams 
et al., 2013; Beebee & Griffiths, 2005; Lannoo, 2005; Stuart et al., 
2004). The arroyo southwestern toad (Anaxyrus californicus; arroyo 
toad; Figure 1) has been extirpated from approximately 75% of its 
historical habitat and is one of the most vulnerable amphibian spe-
cies in California (Jennings & Hayes, 1994; Sweet & Sullivan, 2005). 
The US Fish and Wildlife Service (USFWS) listed the arroyo toad as 
an endangered species in December 1994 (USFWS, 1994) and re-
leased a Recovery Plan in 1999 (USFWS, 1999). The arroyo toad 
decline has been attributed to extensive habitat loss, human mod-
ification to water flow regimes, and the introduction of non-native 
predators (US Fish and Wildlife Service, 1999). Climate variability 
and extremes can affect all of these factors.

The arroyo southwestern toad is a specialized amphibian en-
demic to the coastal plains and mountains of central and south-
ern California and northwestern Baja California (Ervin, Beaman, & 
Fisher, 2013; Jennings & Hayes, 1994). It primarily inhabits low gra-
dient streams and rivers containing sandy soils with sandy stream-
side terraces (Barto, 1999; Sweet, 1992, 1993; Treglia, Fisher, & 
Fitzgerald, 2015). Reproduction is dependent on the availability of 
shallow, still, or low flow pools in which breeding, egg laying, and 
larval development occur. Annual rainfall in southern California is 
highly variable and heavily influenced by the El Niño–Southern 
Oscillation (ENSO) cycle (Schonher & Nicholson, 1989). The surface 
hydrology of stream systems occupied by arroyo toads varies from 
being ephemeral, where surface water is present only in normal to 
high rainfall years, to seasonally predictable, where surface water is 
typically present during the breeding season every year.

California recently experienced an unprecedented drought from 
2012 through 2015 (Diffenbaugh, Swain, & Touma, 2015; Funk, Hoell, 
& Stone, 2014; Griffin & Anchukaitis, 2014; Robeson, 2015). These 
types of extreme and prolonged drought events have been widely 
predicted to increase across California and the southwestern United 
States according to recent climate modeling and climate prediction 
studies (Seager et al., 2007; Cayan et al., 2010; Dettinger & Cayan, 
2014; Diffenbaugh et al., 2015). Hydrological models have linked 
these climate model projections to significantly reduced streamflow 
and increased frequency of drying events, particularly in ephemeral 
stream systems (Jaeger, Olden, & Pelland, 2014; Seager et al., 2013), 
resulting in potential deleterious effects on the persistence of native 
fish and invertebrates (Jaeger et al., 2014; Montgomery et al., 2015).

Recent monitoring studies have shown that seasonal hydrology 
is extremely important in determining arroyo toad population dy-
namics and the relative risk of stressors such as non-native species 
and climate extremes (Brehme, Matsuda, & Fisher, 2013; Miller, 
Brehme, Hines, Nichols, & Fisher, 2012). Although there is grow-
ing knowledge about habitat relationships and stressors (Mitrovich, 
Gallegos, Lyren, Lovich, & Fisher, 2011), there is still a lack of basic 
life history information important for modeling population viability 
and assessing species status. These information gaps include how 
long toads live in natural systems and how their population structure 
varies across occupied drainages. Stable age structures and high lon-
gevity would indicate arroyo toad populations are more resilient to 
temporal fluctuations within suitable breeding habitat.

In this study, our primary goals were to determine how long 
arroyo toads live in natural systems and whether population age 
structures varied across occupied river and stream systems so that 
impacts of long-term climate patterns can be better assessed. For 
this, we used skeletochronology to estimate the ages of adult ar-
royo toads in seven occupied drainages with varying surface water 
hydrology in southern California. This technique is cost efficient in 
comparison with long-term capture–recapture studies because it al-
lows for estimation of population age structures in a single year and 
with single captures of individuals.

2  | MATERIAL S AND METHODS

2.1 | Study sites

Southern California has a Mediterranean climate with relatively 
warm, dry summers and mild winters. The rainy season typically 
falls between October and April with most precipitation occur-
ring in January, February, and March. Rainfall is highly variable 
among years but averages 263 mm in San Diego and 407 mm in San 
Bernardino. Our seven survey sites included two with perennial 
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F IGURE  1 The arroyo southwestern toad (Anaxyrus californicus)
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or seasonally predictable water availability (Santa Margarita River, 
Little Horsethief Canyon) and five ephemeral systems where the 
presence of water is dependent upon adequate rainfall (Boden 
Canyon Ecological Reserve, Cottonwood Creek, Cristianitos Creek, 
San Pasqual Valley, and San Vicente Creek; Figure 2).

2.2 | Sampling

During the spring and summer of 2003 and 2004, we conducted 
nighttime arroyo toad surveys at all population sites in accord-
ance with the USFWS protocol (US Fish and Wildlife Service, 1999) 
with the exception of San Pasqual Valley, Cottonwood Creek, and 
San Vicente Creek that were sampled in 2003 only. Nocturnal sur-
veys entailed walking along creek and river reaches, covering both 
aquatic and adjacent terrestrial habitats, in search of adult arroyo 
toads using visual observation and aural detection of calling males. 
All surveys were conducted by USGS biologists familiar with the 
arroyo toad. High-intensity spotlights were used to provide the 
required amount of illumination to maximize detection. When we 
detected adult arroyo toads, we measured snout-to-urostyle length 
(SUL; with the exception of toads in amplexus). For all individuals 

greater than or equal to 45 mm, we recorded sex and weight and 
clipped the fourth toe on the right hind limb at the joint just below 
the third phalange. If the toad was not previously marked with a pas-
sive integrated transponder (PIT) tag, we inserted a PIT tag following 
standard procedures for amphibians (Donnelly, Guyer, Juterbock, & 
Alford, 1994). When toads that had been previously marked in 2003 
were located during 2004, a second toe was removed via toe clip-
ping of the fourth toe on the left hind foot. Clipped toes were pre-
served in 95% ethanol. Only the first capture of each individual toad 
was used in the analyses; however, recaptures of toads PIT tagged 
for this study or by previous researchers allowed us to assess results 
of skeletochronology age estimates from consecutive years.

2.3 | Skeletochronology

Skeletochronology involves the aging of individuals by analyzing 
cross sections of long bones, such as phalanges, for the presence 
of concentric rings, called annuli or lines of arrested growth (LAG). 
LAGs are formed in response to seasonal periods of decreased bone 
growth such as during winter or summer periods of inactivity de-
pending on the species (Bastien & Leclair, 1992; Monnet & Cherry, 

F IGURE  2 Arroyo toad study sites in 
southern California

Boden Canyon

San Vicente Creek

Santa Margarita River

Cristianitos Creek

Little Horsethief Canyon

San Pasqual Valley

Cottonwood Creek

Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community

0 10 20 30 40 505
Kilometers

San Diego, 
California, 

USA



4  |     FISHER et al.

2002; Trenham, Shaffer, Koenig, & Stromberg, 2000). Gary Matson’s 
laboratory in Montana, USA, analyzed the arroyo toad toe clips using 
standardized techniques (McCreary, Pearl, & Adams, 2008). This 
involved preparing cross sections of the toes, examining the cross 
sections under a microscope, and counting lines of arrested growth 
(LAG) in cross sections of the toe bones to estimate age in years. For 
animals that have a single dormancy period each year, the number 
of LAGs counted in the cross section of a toe bone should roughly 
correspond to the number of years the toad has lived. However, it 
has been shown that counts of LAGs to estimate years of age may 
be underestimated by 1 to 2 years due to bone resorption of the 
1st and 2nd LAGs in some species (Cvetkovici, Tomasevic, Aleksic, & 
Crnobrnja-Isailovic, 2005; Fretey & Le Garff, 1996; Plytycz & Bigaj, 
1993). Therefore, when number of LAGs was questionable between 
two consecutive values, the higher value was used in the analyses.

2.4 | Analysis

We ran regression models in the R statistical computing environment 
(R Development Core Team, 2008) to investigate the relationship be-
tween body size (SUL) and estimated age by skeletochronology. We 
compared the fit of linear, log-transformed, and saturation growth 
rate models with and without sex (male, female) using Akaike’s infor-
mation criterion (AIC) and model selection procedures described by 
Burnham and Anderson (2002) and used the best fitting model for 
our analysis. Age structure histograms were also produced in the R 
environment using ggplot2 (Wickham, 2009).

3  | RESULTS

A total of 179 individual toads with snout-to-urostyle length (SUL) 
from 45 to 70 mm were detected and processed at the seven sites. 
We processed 30 toads at Boden Canyon, 41 at Cristianitos Creek, 
four at Cottonwood Creek, 38 in Little Horsethief Canyon, 18 at San 
Pasqual Valley, 46 at Santa Margarita River, and two at San Vicente 
Creek. There were too few animals captured at Cottonwood Creek 
and San Vicente Creek to assess population age structure, so animals 
at these sites were used in regression analysis only.

Skeletochronology analysis of toe cross sections from arroyo 
toads (greater than 45 mm in SUL) resulted in age estimates that 
ranged from 1 to 6 years across all sites. Five animals PIT tagged 
in 2003 were also detected and processed in 2004; therefore, 
we know there is 1-year age difference between capture events. 
Skeletochronology estimated correctly that three animals had 
aged 1 year and estimated the other two animals had aged 0 years 
(Table 1). In addition, six animals that were previously PIT tagged 
in 1998 and 2000 as part of previous studies (Holland, Sisk, & 
Goodman, 2001) were recaptured in 2003 and 2004. We estimated 
the age upon recapture assuming a minimum age at first capture of 
1 year. Based on this assumption, skeletochronology analysis esti-
mated the correct minimum age for two individuals and estimated 
1 year below the known minimum age for four individuals (Table 1). TA

B
LE
 1
 
Sk
el
et
oc
hr
on
ol
og
y 
ag
e 
(y
ea
rs
) e
st
im
at
es
 o
f r
ec
ap
tu
re
d 
to
ad
s

Lo
ca

tio
n

PI
T 

ta
g 

no
.

Ye
ar

 o
f 1

st
 

C
ap

tu
re

M
in

im
um

 a
ge

 
(in

 y
ea

rs
) a

t 
1s

t c
ap

tu
re

A
ge

 (i
n 

ye
ar

s)
 

es
tim

at
e 

at
 1

st
 

ca
pt

ur
e 

ba
se

d 
on

 
sk

el
et

oc
hr

on
ol

og
y

Ye
ar

 o
f 

re
ca

pt
ur

e

A
ge

 (i
n 

ye
ar

s)
 

es
tim

at
e 

at
 

re
ca

pt
ur

e 
ba

se
d 

on
 

ag
e 

at
 fi

rs
t c

ap
tu

re

A
ge

 (i
n 

ye
ar

s)
 

es
tim

at
e 

at
 

re
ca

pt
ur

e 
ba

se
d 

on
 

sk
el

et
oc

hr
on

ol
-

og
y

D
iff

er
en

ce
 

(e
st

im
at

e-


kn
ow

n)

A
ni
m
al
s 
fir
st
 

pi
t-t
ag
ge
d 
as
 p
ar
t 

of
 s
ke
le
to
 s
tu
dy

Bo
de
n 
C
an
yo
n

62
62
13
17

20
04

1
3

20
04

3
3

0

Bo
de
n 
C
an
yo
n

62
61
98
82

20
03

1
2–

3
20

04
4

3
−1

Bo
de
n 
C
an
yo
n

62
61
92
83

20
03

1
2

20
04

3
3

0

C
ris
tia
ni
to
s 
cr
ee
k

44
09

43
74

20
03

1
4

20
04

5
4

−1

C
ris
tia
ni
to
s 
cr
ee
k

44
36
92
98

20
03

1
3

20
04

4
4

0

A
ni
m
al
s 
pi
t-t
ag
ge
d 

in
 p
re
vi
ou
s 
st
ud
ie
s

C
ris
tia
ni
to
s 
cr
ee
k

40
66
49
72
5b

19
98

1
N
A

20
04

7
6

−1

C
ris
tia
ni
to
s 
cr
ee
k

41
4C
58
12
37

19
98

1
N
A

20
04

7
6

−1

C
ris
tia
ni
to
s 
cr
ee
k

42
55
4E
3D
59

20
00

1
N
A

20
04

5
4

−1

C
ris
tia
ni
to
s 
cr
ee
k

42
56
39
59
4F

20
00

1
N
A

20
03

4
4

0

C
ris
tia
ni
to
s 
cr
ee
k

50
1C
77
1A
7C

20
00

1
N
A

20
04

4
3

−1

C
ris
tia
ni
to
s 
cr
ee
k

50
1D

30
27

04
20

00
1

N
A

20
03

3
3

0



     |  5FISHER et al.

There was a significant association between estimated age by 
skeletochronology and animal size (snout-to-urostyle length; SUL) in 
both sexes; however, the coefficient of determination showed a much 
better fit for females (R2 = .488, p < .001) than for males (R2 = .190, 
p < .001). Saturation growth rate equations best represented these 
data with SUL Length (mm) = (a × Age(Years))/(b + Age(Years)) where 
a = maximum SUL and b = growth rate at 0.5 × a. Between the ages 
of 1 and 6 years, females had an estimated growth rate of 0.46 and 
average maximum SUL length of 73.5 mm, whereas males had a 
growth rate 0.19 and an estimated average maximum SUL length of 
61.3 mm (Figure 3).

Rainfall varied among sites and years. Rainfall records from 
weather stations within close proximity to our sites (cdec.water.
ca.gov; usclimatedata.com; wunderground.com) indicated below 
normal rainfall for most years at all sites (Figure 4). Population 
age structures of arroyo toads varied among sites. Our histo-
grams of toad ages show that ephemeral sites (Cristianitos 
Creek, San Pasqual Valley, and Boden Canyon) were skewed 
toward individuals ranging 3 to 5 years old, recruited into the 
populations between 1998 and 2001 (Figures 5 and 6). In con-
trast, ages of toads at sites with seasonally predictable surface 
water during the breeding season (Little Horsethief Canyon, 
Santa Margarita River) were skewed toward younger individuals 
which indicates more consistent recruitment for these popula-
tions (Figures 5 and 6).

4  | DISCUSSION

4.1 | Age estimation

Skeletochronological analysis was successful in documenting differ-
ing age structures among populations. However, the control sam-
ples indicated that this method may often underestimate the age of 
toads by at least 1 year. There are several possible reasons for un-
derestimation. First, juveniles may not form their first LAG in the dry 
season or winter following metamorphosis (Driscoll, 1999). Second, 
similar studies on other toad species have shown that one, or less 
commonly, two early LAGs may become partially to fully resorbed 
(Cvetkovici et al., 2005; Fretey & Le Garff, 1996; Plytycz & Bigaj, 
1993). Also, growth rate decreases as individuals get older, resulting 
in smaller amounts of bone laid down annually and making recog-
nition of these LAGs more difficult (Leclair & Castanet, 1987). For 
these reasons, our LAG results should be interpreted as estimation 
of minimum ages. Actual ages could be zero to two or more years 
greater, with the greatest bias expected to be in the oldest adults. It 
is unlikely that this strongly biased our assessment of the relative age 
structures across populations because any underestimation would 
be expected to act across populations. It will be important to com-
bine skeletochronology with long-term capture–recapture studies in 
order to determine age of first LAG, and deposition and reabsorption 
rates that may result in bias of LAG age estimates. Western toads 

F IGURE  3 Relationship between 
size (snout-to-urostyle length, mm) and 
arroyo toad age (years) estimated by 
skeletochronology
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have life spans from roughly 8 to 11 years, and Couch’s Spadefoot 
toads live 11 to 13 years (Bull, 2006; Tinsley & Tocque, 1995). Our 
skeletochronology results show that arroyo toads can live to at least 
6 years in natural systems, but for the reasons stated above, their 
maximum life span is likely closer to 8 years.

Most toads appeared to reach close to their maximum size by 
the second year, after which the growth rate slowed considerably. 
We found evidence of sexual size dimorphism with maximum growth 
of adult females estimated to be 12 mm greater than adult males. 
Sexual size dimorphism where the female is larger is common in most 
anurans (Monnet & Cherry, 2002; Shine, 1979; Ziang & Lu, 2013).

4.2 | Population age structure

In situations of stable recruitment and survivorship, we expect to see 
population age structures biased toward younger individuals and de-
clining as age increases (Kellner & Green, 1995). This was evident in 
the age structure of the population within the lower Santa Margarita 

River where there is seasonally predictable surface water during the 
breeding season. The population in Little Horsethief Canyon also had a 
somewhat stable population structure as there are seasonally predict-
able pools of surface water in all but extreme drought years. Population 
age structures of arroyo toads from the ephemeral streams, however, 
were skewed toward older adults suggesting that populations in these 
systems are likely unstable and dependent upon successful repro-
duction and survival of cohorts from higher rainfall years (Tinsley & 
Tocque, 1995). This was expected as there is no surface water avail-
able for breeding and recruitment in years of below normal rainfall. 
Older age cohorts roughly corresponded to higher rainfall years in the 
ephemeral creeks in our study. However, imprecision of age estimates 
due to unknown variations in LAG deposition and resorption prevents 
precise identification of specific years of recruitment (Hemelaar, 1985; 
Leclair & Castanet, 1987; Wagner et al., 2011).

4.3 | Hydrologic stochasticity, biological 
responses, and drought projections

Arroyo toads in the ephemeral watersheds appear to be primarily in-
fluenced by stochastic processes (i.e., amount of rainfall), while those 

F IGURE  4 Rainfall (in cm) among years at arroyo toad study 
sites. “Normal” average annual rainfall indicated by (—) (National 
CLimate Data Center 2017). (Normal for Little Horsethief Canyon is 
approximately 91 cm/year, for Santa Margarita River and Cristianitos 
Creek is ≈34 cm/year, and for Boden Canyon and San Pasqual Valley 
is ≈41 cm/year (http://cdec.water.ca.gov; https://usclimatedata.com)

F IGURE  5 Estimated age distribution of arroyo toads among 
study sites. (Seasonally predictable sites include Santa Margarita 
River and Little Horsethief Canyon)

http://cdec.water.ca.gov
https://usclimatedata.com
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in perennial systems appear to be primarily influenced by determinis-
tic processes (i.e., predation, competition, and habitat alteration; e.g., 
Miller et al., 2012). We expect less temporal variability and increased 
population persistence within the seasonally predictable systems. 
However, the threat of extirpation of amphibians by non-native 
species predation and associated habitat loss in these systems is an 
immediate and well-documented threat (reviewed in Kats & Ferrer, 
2003; Miller et al., 2012; Brehme et al., 2013). Systems driven by 
stochastic processes are expected to be more highly variable among 
years (Death & Winterbourn, 1994; Ross, Matthew, & Echelle, 1985; 
Therriault & Kolasa, 2000). The Mediterranean climate and influence 
from the ENSO cycle in southern California result in highly variable 
annual rainfall. Consequently, ephemeral creeks may remain dry in 
low rainfall years and experience extensive flooding and scouring 
in high rainfall years. The populations in ephemeral habitats are at 
increased risk of extirpation from a prolonged drought. In the sec-
ond half of the 21st century, the duration of extreme dry events is 
projected to increase markedly, with most dry spells lasting longer 
than 5 years and some lasting up to 12 years (Cayan et al., 2010). 
Results of our study indicate that toads can live up to six or possibly 
7 or 8 years; therefore, an extended drought of six or more years 

would be expected to result in substantial reductions or extirpation 
of entire populations due to lack of breeding opportunities, reduced 
food resources, and prolonged drought stress in adults. Water man-
agement for increased human water needs may also increase this 
risk (Marshall, Robles, Majka, & Haney, 2010). Historically, recolo-
nization of suitable habitat from nearby populations of arroyo toads 
could eventually occur after these unlikely events; however, many 
current arroyo toad populations are effectively isolated due to habi-
tat fragmentation and extensive development in southern California. 
Therefore, the cumulative effects of changing rainfall patterns on 
the persistence of this short-lived toad in ephemeral systems are of 
great concern. This in addition to invasive species, habitat alteration, 
and hydrological pressures on remaining populations in perennial 
systems threatens the long-term persistence of this species.

Many aquatic and semi-aquatic species adapted to southwest-
ern and Mediterranean ecosystems are similarly at risk from reduced 
surface water availability, leading to reduced aquatic connectivity, 
recruitment, and survivorship (Jaeger et al., 2014; Jones et al., 2017; 
Leidy, Bogan, Neuhaus, Rosetti, & Carlson, 2016; Lovich et al., 2017; 
Montgomery et al., 2015). For species that burrow and forage in ad-
jacent terrestrial systems, increased drought stress can further affect 
overwinter survival and prey availability due to reduced soil moisture 
and associated plant and animal mortality (Lovich et al., 2017; Venturas 
et al., 2016). The arroyo toad serves as a model for understanding 
semi-aquatic species’ responses to long-term climatic and hydrologic 
changes and the potential loss of biological integrity from these unique 
Mediterranean stream systems. Freshwater-dependent species could 
benefit from adaptive management strategies that rebuild resiliency in 
the face of projected changes in climate and water availability.
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