Plants are Like Other Animals Except Arthropods and Vertebrates

Norman Ellstrand Professor of Genetics University of California - Riverside Some Generalities about How Plants are "Different" and How Those "Differences" Might Affect Conservation Genetic Monitoring and Management

Plants vs. other organisms

	Plants	Protists	Animals	Arthropods + Vertebrates
1. Bisexuality permitting selfing	+++	+++	++	0
2. Reproduction w/out sex	+++	+++	++	+
3. Spontaneous hybridization	+++	?	?	+
4. Genomic lability	+++	?	?	+
5. Developmental flexibility	++++	++	+++	+
6. Lepto-skewed dispersal of tiny diaspores	+++	++++	+++	++?
7. Alternation of generations	++++	+++	0	0

1. Bisexuality w/ Selfing Most Common Plant Breeding System – But Obligate Outcrossing is Common, Too

Monoecious plant

Illinois Natural History Survey

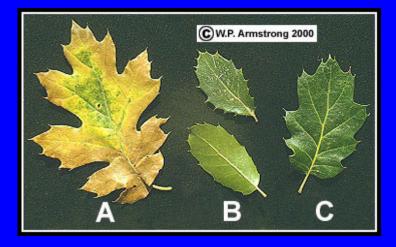
Selfing - Considerations for Monitoring and Management ...

- High levels of selfing are usually associated with low levels of gene flow, leading to
 - Typically, low variation w/in populations; strong differences between populations.
 - Easier local adaptation
- Possible threats/problems:
 - Figuring out whether selfing predominates
 - Gene flow from outcrossing relatives
 - Cryptic species
 - Poorly planned "genetic rescue"

2. Reproduction without sex: facultative and obligate

- Vegetative reproduction is particularly common
 - By joints, stolons, bulbils, rhizomes, etc.
 - Typically, in perennials
- Asexual seed (agamospermy)
 - Many Taraxacum, Citrus, Rubus species

Asexuality - Considerations for Monitoring and Management ...


- High levels of asexuality usually lead to
 - A few clones (low variation) w/in populations; strong differences between populations.
 - Easier local adaptation
- Possible threats/problems
 - What is an individual?
 - Figuring out whether asexuality predominates
 - Clonal "Species" concept sometimes goofy
 - Poorly planned "genetic rescue"

3. Spontaneous hybridization

- Plenty of cross-compatibility within genera

 Especially for perennials

 And within certain families
- And within certain fammes
 - Cactaceae, Orchidaceae, and parts of Poaceae

3. Hybridization - Considerations for Monitoring and Management ...

- Intertaxon hybridization can sometimes lead to fertile hybrids and subsequent introgression, flow of alleles from one taxon to another
- Possible threats/problems:
 - Outbreeding depression
 - Genetic assimilation
 - What is a species?

4. Genomic lability

- chromosomal variation within species and populations is not rare – polyploidy, aneuploidy, translocations

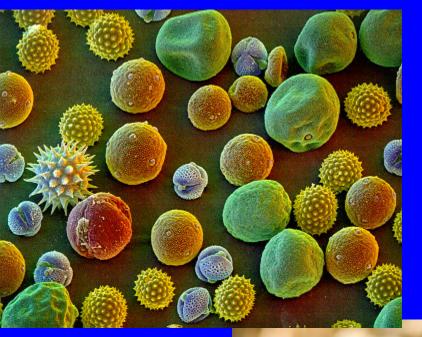
← Mikania micrantha

Most angiosperms and ferns have polyploid genomes

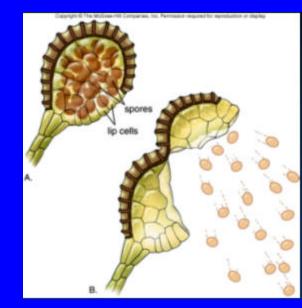
Lots of mobile elements

4. Genomic lability - Considerations for Monitoring and Management ...

- Possible threats/problems
 - Variation between populations may suggest cryptic species
 - Within population chromosomal variation, how do know if we even care?
 - plant chromosomal studies are almost a "lost art"
- Note allopolyploidy is so common that most plant species are (> 90%) descended from an allopolyploid ancestor – more info on request


4. Developmental flexibility- Considerations for Monitoring and Management ...

- A difference but is it important?
 - Input from audience



6. Skewed + leptokurtic dispersal of tiny diaspores

Pollen Seed Spores


Tiny, Numerous Diaspores - Considerations for Monitoring and Management ...

- Small outcrossing plant populations generally receive evolutionarily significant gene flow (>1%) from cross-compatible populations at distances of 100s to 1000s of meters
- Diaspores seed and spores may survive a long time
- Possible threats/problems
 - Gene flow change in status quo
 - Specific risk depends on increase nor decrease

- Seed/spore bank: What is an individual/population?

7. Alternation of Generations The Big Lie = Pollen are not "gametes"

7. Alternation of Generations - Considerations for Monitoring and Management ...

- A difference but is it important?
 - Input from audience

Appendix 1 – Genetically Engineered Plants? more info on request

At the moment, a GE plants are a LOT more common than GE animals, but worldwide most of the plants (>>95%) intentionally grown belong to 4 species: Canola, Corn, Cotton, Soy (in California, add Alfalfa and Sugarbeet)

Occasionally an issue for conservation scientists: Environmental risks? Salvation for rare species?

Appendix 2 – why plants are superior research organisms

- "Plants stand still and wait to be counted." – J. Harper
- "Plants don't defecate in your hand"
- "Plants don't bite you."
- "Plants don't bleed."
 - D. A. Levin
- "Quantitative Genetics" studies feasible for shortlived plants that produce enough seeds/vegetative propagules

Quantitative Genetic Study of the "Genetics of Fitness"

Worried about

- Restoration?
- Translocation?
- Genetic rescue?
- Assisted migration?
- Local adaptation?
- Local maladaptation?
- Inbreeding depression?
- Outbreeding depression?

... Lab-based studies might be helpful, but won't be very helpful

Quantitative Genetic Study of the "Genetics of Fitness"

Field-based studies can be cheap and helpful

- Common garden experiments
 - Inc. planting beyond range edge
- Reciprocal transplants
- Inter-breeding and field performance of progeny

BUT not necessarily easy

- Sample sizes must be large enough to be statistically meaningful
- Parental (male/female) and grand-parental effects?
- Replicates over time usually necessary

Summary

Plants present challenges and opportunities for conservation monitoring and management (different from vertebrates and arthropods)

Thanks!

USDA, NSF, EPA and other funding The Village a.k.a. "Team Ellstrand"