

University of California
Agriculture and Natural Resources

Large scale, low cost restoration of *Stipa* pulchra grasslands using herbicides.

Carl Bell, Marti Witter, and John Eckhoff

University of California
Cooperative Extension, University
of California Riverside, US
National Park Service, CA
Department of Fish and Game

University of California Agriculture and Natural Resources

Invasive Plants

Why Herbicides?

- Low cost
- Effective
- Can be used early in the rainy season
 - Kill the weeds
 - Let the natives have the water
- Environmental pros and cons equivalent to other methods such as burning or grazing

University of California
Agriculture and Natural Resources

San Diego
Sites –
CA DFG
Rancho
Jamul
Ecological
Reserve

Los Angeles Co. sites
-US NPS Santa
Monica Mountains
National Recreation
Area, Cheeseboro
Canyon

- In an area with an existing, but sparse native stand of purple needlegrass;
 - Can we find post-emergence herbicides that are safe to apply <u>broadcast</u> over the native grass?
 - Will these herbicide treatments increase the cover and vigor of the needlegrass?

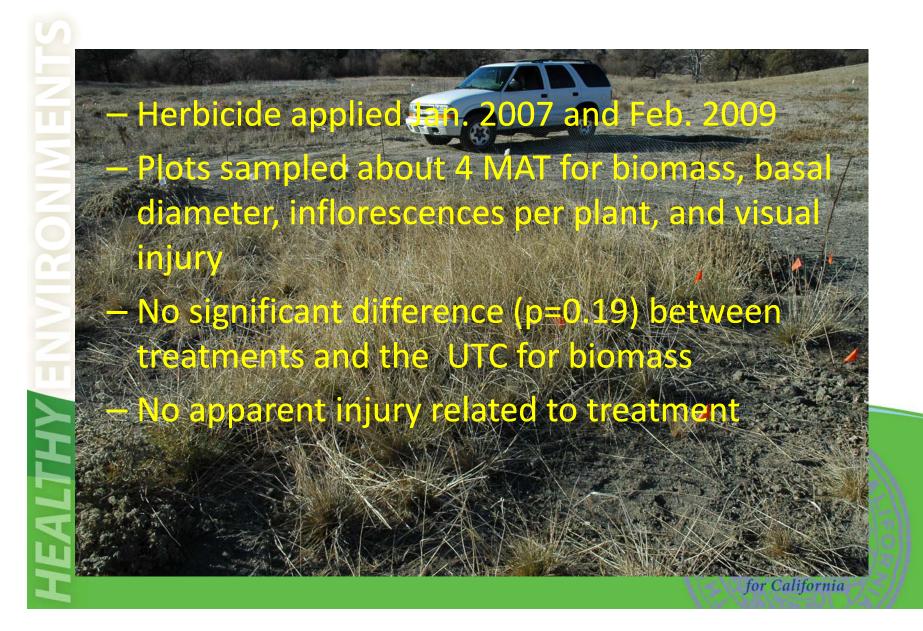
62010 Google

32 39 42 36" N 116 51 39 32" W elev 266 i

University of California
Agriculture and Natural Resources

Herbicide Selectivity can be based upon:

- Genetically different susceptibility
 - At the Class to Species level
 - Life history (annual vs perennial)
 - Or unique physiology
- Rate = amount of herbicide applied
- Plant phenology
- Season


University of California
Agriculture and Natural Resources

- Herbicides applied in spring to established purple needlegrass, annually for 3 years.
- Herbicide treatments include:
 - Fluazifop-butyl (Fusilade)
 - Clethodim (Envoy)
 - Glyphosate (Roundup)
 - Pelargonic acid (Scythe)
 - Imazapic (Plateau)
 - Trifluralin (Preen granules)
 - Aminopyralid (Milestone)
 - Triclopyr (Garlon)

University of California

Agriculture and Natural Resources

SMMNRA Research

RJER Results

Treatment	Cover		Grams/plant		Basal diameter (cms)	
	site 1	site 2	site 1	site 2	Site 1	Site 2
Fusilade + Garlon LR	23.3	10.5	48.0	19.8	89	94
Fusilade + Garlon HR	30.0	18.8	56.0	21.8	72	106
Glyphosate LR	6.3	15	12.5	17.5	37	76
Glyphosate HR	0.3	9.5	0.8	12.5	7	80
UTC	0.5	6.3	9.0	8.5	23	67

University of California

Agriculture and Natural Resources

University of California

Agriculture and Natural Resources

- There are no silver bullets
 - Fusilade alone was not sufficient
 - Vulpia myuros is resistant to Fusilade and all other grass herbicides
 - Glyphosate was safe and effective in some cases but not all
 - Fusilade plus Garlon or Milestone worked well, but;
 - Milestone and Garlon damage geophytes
- Regardless, some treatments increased needlegrass cover and vigor significantly
 - Eliminating weeds early in spring benefits natives
 - Treatments are low cost and effective
 - Integrated weed management systems can be developed

University of California
Agriculture and Natural Resources

