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Abstract Estimating landscape resistance to animal

movement is the foundation for connectivity modeling,

and resource selection functions based on point data are

commonly used to empirically estimate resistance. In

this study, we used GPS data points acquired at 5-min

intervals from radiocollared pumas in southern Califor-

nia to model context-dependent point selection func-

tions. We used mixed-effects conditional logistic

regression models that incorporate a paired used/

available design to examine the sensitivity of point

selection functions to the scale of available habitat

and to the behavioral state of individual animals. We

compared parameter estimates, model performance, and

resistance estimates across 37 scales of available

habitat, from 250 to 10,000 m, and two behavioral

states, resource use and movement. Point selection

functions and resistance estimates were sensitive to the

chosen scale of the analysis. Multiple characteristic

scales were found across our predictor variables,

indicating that pumas in the study area are responding

at different scales to different landscape features and

that multi-scale models may be more appropriate.

Additionally, point selection functions and resistance

estimates were sensitive to behavioral state; specifically,

pumas engaged in resource use behavior had an opposite

selection response to some land cover types than pumas

engaged in movement behavior. We recommend exam-

ining a continuum of scales and behavioral states when

using point selection functions to estimate resistance.

Keywords Puma concolor � Conditional

logistic regression � Resistance surface � Cost-

surface � Connectivity � Resource selection

function

Introduction

Estimating landscape resistance to animal movement

is the foundation for connectivity modeling and the

identification of conservation corridors. In this
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context, ‘resistance’ represents the willingness of an

organism to cross a particular environment, the

physiological cost of moving through a particular

environment, the reduction in survival moving

through a particular environment, or an integration

of all these factors. As reviewed in Zeller et al. (2012),

methods for empirically estimating resistance to

movement use either point locations collected inde-

pendently or extracted from telemetry data, steps or

paths derived from telemetry data, or genetic markers.

Typically, when points, steps, or paths are employed, a

resource selection function is developed and then used

to predict probability of use across the area of interest.

The inverse of this probability is then used as an

estimate of resistance. The assumption here is that low

resistance areas are preferred while high resistance

areas are avoided.

Resource selection functions based on points, or

point selection functions (PSFs), are widely used to

analyze wildlife-habitat relationships (Boyce et al.

2002) and, although PSFs do not explicitly represent

movement, they are one of the most common ways to

empirically estimate resistance to movement for a

species (Zeller et al. 2012). At the core of any PSF, and

resource selection functions in general, is a ‘used’

versus ‘available’ design where ‘preferred’ habitats

are used in greater proportions than their availability

and vice versa (Manly et al. 2002). Use of PSFs in

ecology have traditionally been based on one or two

scales of analysis (Wheatley and Johnson 2009), and

inferences are made across all data points regardless of

the behavioral state of an individual. However, PSFs,

particularly those based on GPS telemetry data, have

the potential for examining a range of scales and

behavioral states to model increasingly realistic rela-

tionships between individuals and their environments

through ‘context-dependent’ modeling.

Context-dependent modeling acknowledges that

an animal’s interaction with its environment depends

on its location, its surroundings, and its behavioral

state (Dalziel et al. 2008), and thus accounts for the

landscape and behavioral context of an individual. A

simple, but effective way to model context-depen-

dent PSFs is to use conditional logistic regression.

Conditional logistic regression, also called case-

controlled or paired logistic regression, pairs each

used point or area with a relevant available area

(Compton et al. 2002). The available area is often

defined based on the acquisition interval of GPS

collars. For example, with a 1-h acquisition interval,

the extent of the available area is defined as some

upper quantile of the distribution of step lengths at

1-h (Boyce 2006). However, in conditional logistic

regression, the chosen extent of available habitat also

determines the scale of the analysis (ignoring grain

size), and the collar acquisition interval is rarely

chosen with a priori knowledge of the scales at which

a species responds most strongly to its environment

(following Holland et al. (2004), we use the term

‘characteristic scale’ to reference this strongest scale

of response). Furthermore, there may be different

characteristic scales for each habitat type or land-

scape feature. Therefore, using a single scale may

result in inaccurate estimates of selection and resis-

tance (Wheatley 2010; Norththrup et al. 2013) and a

continuum of scales should be examined so as to

capture the true characteristic scale(s). If multiple

characteristic scales are found, a multi-scale model

may be more appropriate to model context-dependent

resource selection (Meyer and Thuiller 2006; DeCe-

sare et al. 2012; Martin and Fahrig 2012).

Historically, PSFs were modeled using all data

points, regardless of the behavior of the animal at the

time the points were collected. However, it is

reasonable to assume that selection of habitat for

feeding or denning, for example, may be different

than selection of habitat for movement between

resource patches. Combining data from different

behavioral states in a single analysis almost certainly

biases inferences about resource selection and esti-

mates of landscape resistance. Fortunately, the

availability of high resolution GPS data now allows

for approaches that incorporate different behavioral

states. Distance, or rate of movement, and turning

angle have been the primary criteria used to discern

between two main behavioral states, variously

defined as active versus resting (Squires et al.

2013), or static versus traveling (Dickson et al.

2005). While a few studies have begun to compare

resource selection during different behavioral states

(e.g. Dickson et al. 2005; Squires et al. 2013), there

are no comparative studies on how behavior influ-

ences resistance estimates.

We investigated the influence of scale and behav-

ioral state on context-dependent PSFs and the resis-

tance estimates derived from these PSFs using GPS

collar data from pumas (Puma concolor) in southern

California. The GPS collars were programmed at a
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high sampling intensity (5-min intervals), allowing us

to empirically examine a continuum of scales, from a

very fine scale to the scale of a typical home range for a

puma in the region (Dickson and Beier 2002). First, we

hypothesized that PSF inference would be sensitive to

the extent of available habitat and that pumas would

have different characteristic scales for different land

cover types. Second, we hypothesized that using all

data points or partitioning points based on behavioral

state (resource use versus movement) would influence

interpretation of how pumas were responding to their

environment. Third, we hypothesized that resistance

estimates based on context-dependent PSFs would be

sensitive to both scale and behavioral state. Fourth, we

hypothesized that a multi-scale model would be more

appropriate for modeling resistance to movement than

a single-scale model. Lastly, we hypothesized that

results from a context-independent model would differ

from the results of our context-dependent models, both

in model performance and estimates of resistance.

Methods

Study area and data collection

The study area encompassed 4,089 km2 in the Santa

Ana Mountains and surrounding lowlands in southern

California, including portions of Orange County,

Riverside County and San Diego County. The Santa

Ana mountains are a coastal range with elevation

ranging from sea level to 1,734 m and a Mediterranean

climate defined by hot dry summers and mild wetter

winters.

Eight pumas (five female and three male) were

collared between October 2011 and February 2012 and

were fit with Lotek 4400 S GPS collars programmed to

acquire locational fixes every 5 min (Lotek Wireless

Inc., Canada). Collar duration ranged from 12 to

71 days (median = 24). Long-term collar accuracy

from manufacturer tests is 5 to 10 m, though vegetation

types and topographical conditions may decrease accu-

racy (Chang, personal communication). Therefore, two-

dimensional fixes with a PDOP [ 5 were removed to

avoid the use of data that may have large spatial errors,

as recommended by Lewis et al. (2007), resulting in a

mean data loss of 2.96 %. Missed fixes from failure of

the collar to record a GPS location resulted in a mean

data loss of 15.87 %, bringing our total mean data loss to

18.83 %. Citing various studies, Frair et al. (2010) have

cautioned that coefficients of selection become statis-

tically different when there is a 10–25 % loss of data

from positional or habitat bias. However, our losses

were relatively consistent across individuals and if

biases were introduced, they were likely uniform in

nature. The final data set consisted of 61,115 fixes across

the eight individuals (range 1,650–20,433; med-

ian = 5,846). Due to the low number of individuals,

sexes were pooled in the analyses, and a mixed-effects

model was used to account for inter-individual differ-

ences (see ‘‘Statistical analysis’’ section).

We used land cover types from the California

Wildlife Habitat Relationship database as independent

variables in our PSFs. The Wildlife Habitat Relation-

ship data were obtained from the CalVeg geospatial

data set (USDA Forest Service 2007) in vector format

at the 1:24,000 scale, which we rasterized at a 30-m

resolution. There were 25 mapped land cover types

present in the study area, but many types had very low

occurrence (\1 %). In order to avoid issues with data

sufficiency, we aggregated these 25 types into nine

classes based on provided descriptions from the

California Department of Fish and Game (1988).

The final land cover classes and their percentages of

the study area were as follows: chaparral (45 %),

urban (19 %), coastal scrub (14 %), annual grassland

(6 %), coastal oak woodlands (5 %), agriculture

(5 %), riparian areas (3 %), perennial grassland

(2 %), and naturally barren or open areas (1 %).

Used and available habitat

All data analysis was performed using R software (R

Core Team 2013). Our used and available habitat were

defined in a paired design to allow for the use of

conditional logistic regression (Compton et al. 2002).

For each telemetry point, we designated ‘used’ habitat

as a 30-m fixed-width buffer around the pixel where a

point was located. We calculated the proportions of

land cover types across these nine pixels. This

definition of used habitat allowed us to meet two

goals: (1) it provided a buffer that helped to account

for small locational errors in the telemetry points

(Rettie and McLoughlin 1999), and (2) it allowed us to

incorporate the immediate environment around each

point into the area of used habitat. The latter goal was

based on the assumption that an individual may not

only be selecting habitat at the used pixel, but may be
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selecting a particular pixel because of its immediate

surroundings. This may be especially important for

puma that are known to utilize edge habitats (Laundré

and Hernández 2003; Laundré and Loxterman 2007).

‘Available’ habitat for each used point was defined

as follows. We calculated the straight-line distances

between consecutive points, which gave us a distribu-

tion of displacement distances. Breaks in the data due

to poor fixes or missing fixes were taken into account in

the calculation of these distances. We then fit a

generalized Pareto distribution to the empirical distri-

bution of displacement distances using the POT

package (Ribatet 2012). The Pareto distribution fit

the empirical distribution well due to its characteristic

steep curve and long right tail (Fig. 1). We then placed

a Pareto kernel over each used point, thresholded this

kernel at the 97.5 percentile of the Pareto distribution

or the maximum observed displacement distance,

whichever was smaller, calculated the intensity of

each land cover type, and converted these intensities to

proportions. Our approach allowed us to census the

entirety of land cover types within the available area in

their correct proportions, as opposed to what is

commonly done in PSFs where a random sample of

points are selected within the available area. This

alleviates issues with selecting a sample size for

available points and associated biases in inference

(Norththrup et al. 2013). In addition, the use of the

Pareto kernel allowed us to weight land cover within an

ecological neighborhood (sensu Addicott et al. 1987)

around each used point based on probability of use.

To explore the effect of acquisition interval and

associated extent of available habitat on PSF inference

and estimates of resistance, we implemented 36

additional extents as defined by acquisition intervals

from 10- to 360-min at 10-min intervals. For each new

acquisition interval, we calculated the displacement

distances by subsetting the 5-min data at that interval

and calculating the straight-line distance between

consecutive points. We then fit a new Pareto distribu-

tion to each empirical distribution, defined a maxi-

mum threshold and calculated the proportion of

available habitat within the Pareto kernel as described

above (online Appendix 1). It is important to note here

that all of the original 5-min points were used in the

PSF analyses for each of our 37 scales; the subsetting

of points was performed only to acquire the distribu-

tions of displacement distances for the additional 36

scales.

GPS collars programmed at a high sampling

intensity produce data that are autocorrelated, making

it difficult to meet the independence assumption

inherent to logistic regression. When this assumption

is violated, the standard errors of the parameter

estimates may be deflated resulting in inflated type 1

error rates (Legendre 1993) and the parameter esti-

mates themselves may or may not be biased (Dormann

et al. 2007; Hawkins et al. 2007). However, because

we were primarily concerned with the predictive

ability of the models, and were not testing the

significance of the parameters in a traditional hypoth-

esis testing framework, we opted not to alter our data

structure or our models to account for autocorrelation

in our data (though see ‘‘Behavioral states’’ section

where some correlation may be addressed in our

parameterization of resource use points).

Behavioral states

We distinguished between two behavioral states: (1)

resource use, and (2) movement. A static or slow and

tortuous trajectory more likely reflected resource use,

such as acquiring food and seeking and using day beds,

than a faster and more direct trajectory, which more

likely reflected purposeful movement through the

landscape between resource use patches. Because we

did not know, a priori, if a telemetry point was

Fig. 1 Distribution of displacement distances and fitted Pareto

distribution (blue line) at the 5-min acquisition interval.

Displacement distances were calculated as the straight-line

distance between consecutive points. Pareto distributions were

fit to the data at each of our 37 acquisition intervals. (Color

figure online)
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recorded during a movement or resource use behavior,

we used a range of definitions for each behavioral state

based on the distances between locations. Distance

thresholds were defined along a geometric progression

from 12.5 to 200 m with a common ratio of two

(Table 1). The largest distance threshold was capped

at 200 m due to an insufficient number of data points

beyond this distance. At the 12.5 m distance threshold,

any point 12.5 m or closer to the previous point was

identified as a resource use point and any point further

than 12.5 m from the previous point was identified as a

movement point. Consecutive resource use points

within the 12.5-m threshold distance of each other

were considered part of the same resource use cluster.

This same procedure was performed for each distance

threshold.

Our range of definitions for each behavioral state

ran the continuum from least conservative to most

conservative. The 12.5-m distance threshold required

resource use points to be very close to one another and

the definition of resource use at this threshold likely

did not include any true movement points. Therefore,

this was considered our most conservative definition

of resource use. Conversely, the 12.5-m distance

threshold was considered our least conservative def-

inition for movement since there were likely many true

resource use points included with the designated

movement points. At the opposite end of our contin-

uum, 200 m, the movement points were considered to

be relatively pure. For the remainder of the paper we

will refer to resource use and movement points along

this continuum as follows: RU1 and M1 are the

resource use and movement points, respectively, based

on the least conservative definition for each behavioral

state (RU = 200 m; M = 12.5 m), whereas RU5 and

M5 are based on the most conservative definitions

(RU = 12.5 m; M = 200 m).

Statistical analysis

At each scale and for all definitions of each behavioral

state, as well as for all points regardless of behavioral

state, we conducted a conditional mixed-effects

logistic regression with individual cat as a random

effect. We performed both simple regressions for each

land cover type and multiple regressions including all

land cover types. For the multiple regressions, we used

the land cover type with the weakest effect in the

simple regressions as the reference class. In condi-

tional logistic regression, there is no model intercept,

therefore the reference land cover type was simply

omitted from the analysis. We confirmed that corre-

lation among our predictor variables was relatively

low prior to performing the multiple regressions

(maximum Pearson correlation coefficient = -0.48).

We also created a multi-scale model using the

characteristic scale for each land cover type as

identified from the simple regressions (see below).

We used the lmer (or glmer) function in the lme4

package (v. 0.999999-2, Bates et al. 2013) for

performing conditional mixed-effects logistic regres-

sion in R. The use of lme4 requires the differences

between the used and available for each variable to be

calculated at each point prior to analysis and that the

response variable equals one for each data point [as

described in Agresti (2002)]. The full model specifi-

cation in R is provided in online Appendix 2. Online

Appendix 2 also provides a discussion of other options

for conditional mixed-effects logistic regression in R

along with an example of the R code used to conduct

this analysis.

For the movement data, each point was given equal

weight in our models. For the resource use data, each

Table 1 Behavioral states, alternative definitions of behav-

ioral states, and associated attributes used in the PSF analyses

behavioral

state

Alternative

definition

Distance

threshold

(m)

Number

of data

points

Number

of

clusters

All

behaviors

0 61,115 –

Movement M1 12.5 17,614 –

M2 25 12,436 –

M3 50 8,800 –

M4 100 4,212 –

M5 200 507 –

Resource

use

RU1 200 60,608 268

RU2 100 56,903 1,382

RU3 50 52,315 1,933

RU4 25 48,679 2,381

RU5 12.5 43,501 3,892

Consecutive resource use points at or below the threshold

distance were assigned to the same resource use cluster, and the

points within each cluster were down-weighted so that each

cluster received an effective weight of one. Movement points

were any points above the threshold distance and each point

had a weight of one
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point in a cluster was down-weighted by its propor-

tional contribution to that cluster. For example, in a

cluster with 10 points, each point was assigned a

weight of 0.1 and thus each cluster, regardless of the

number of points, received an effective weight of one.

We defined the characteristic scale for each land

cover type as the scale with the largest absolute

regression coefficient and/or largest deviation from an

odds ratio of one. To evaluate the predictive perfor-

mance of the models, we performed a tenfold cross-

validation using the methods recommended by John-

son et al. (2006). These methods are based on the

Hosmer–Lemeshow approach, but are adapted for use

with RSFs. For each model, we calculated the utiliza-

tion value for each RSF bin using the Pareto kernel that

corresponded to the extent of available for that model

(results were similar when we used a uniform kernel).

We quantified predictive performance of the models

using Lin’s (1989) concordance correlation coefficient

(CCC). For a good model, the predicted observations

should fall close to the expected observations on a line

originating at 0 with a slope of 1 (Johnson et al. 2006).

The CCC statistic measures how correlated two points

are based on their deviance from this 45-degree line.

We based the interpretation of results on the square of

the CCC statistic.

To determine if results from context-dependent

models differ from context-independent models, we

focused on the multi-scale models since we assumed

they might be more appropriate than the single-scale

models. To derive the context-independent model, we

ran a mixed-effects logistic regression in an unpaired

framework using lmer with all data points. We

compared model performance amongst our context-

dependent multi-scale models and the context-inde-

pendent multi-scale model.

Estimation of resistance

Resistance estimates from PSFs are typically calcu-

lated by taking the inverse of the predicted probability

of presence. These estimates are often truncated at

some upper value or re-scaled to a range, say from 1 to

10 or 1 to 100 (e.g., Ferreras 2001; Pullinger and

Johnson 2010). Truncation and rescaling may alter the

relative relationships between resistance estimates by

introducing unnecessary subjectivity. To avoid this

subjectivity, we used the inverse of the predicted

probability of presence as our resistance estimates

without any data standardizations. Because estimating

a complete resistance surface for the full factorial of

models was computationally prohibitive, we gener-

ated 20,000 random points across the study area,

predicted the probability of presence across these

points, and used the inverse of these values as our

estimates of resistance.

To determine how sensitive resistance estimates

were to the choice of scale, we calculated the absolute

proportional difference in resistance estimated at each

scale from that estimated at the 5-min/250-m scale.

Similarly, to determine how sensitive resistance

estimates were to behavioral state, we calculated, at

each scale, the absolute proportional difference in

resistance estimates based on the most conservative

definition of each behavioral state (RU5 and M5) from

that estimated based on all points and from each other.

We explored how different the single-scale estimates

of resistance were from the multi-scale estimates by

calculating the absolute proportional differences in

resistance estimated by each single-scale model from

that estimated by the multi-scale model. Finally, we

calculated the absolute proportional difference in

resistance estimates between our multi-scale context-

independent model and our context-dependent

models.

Results

Characteristic scales

The simple conditional mixed-effects logistic regres-

sion models revealed different characteristic scales

among land cover types, including four general

patterns of response: (1) a fine-scaled response where

the strongest response occurred at the finest

scale(s) (e.g., Fig. 2a); (2) a unimodal response where

the strongest response occurred at an intermediate

scale (e.g., Fig. 2c); (3) an asymptotic threshold

response, where the response was weak at fine scales,

and became stronger and eventually reached an

asymptote as scale increased (e.g., Fig. 2h); and (4)

a coarse-scaled response where the strength of

response increased with scale without reaching an

asymptote (e.g., resource-use curves, Fig. 2e). This

last pattern may be due to the true characteristic scale

being at a coarser scale than we examined. The

multiple regression models showed the same patterns.
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Fig. 2 Beta estimates and odds ratios from simple conditional

mixed-effects logistic regressions for each land cover type

across scales and behavioral states. Movement and resource use

1 were the least conservative definitions of those behavioral

states and movement and resource use 5 were the most

conservative. * For some behavioral states at coarser scales,

complete separation was reached in the model solution, which

prevented us from estimating beta coefficients and odds ratios
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Despite pronounced differences in effect size,

characteristic scale, regardless of preference or avoid-

ance, remained relatively consistent across behavioral

states for several land cover types (Fig. 2). For

example, across most definitions of each behavioral

state, grassland had its strongest effect at the 5-min/

250-m scale (Fig. 2a); coastal oak woodland, coastal

scrub, and perennial grassland types had their

strongest effects at the 10-min/530-m scale (Fig. 2c,

f, g, respectively); barren had its strongest effect at the

40-min/2,350-m scale (Fig. 2b); and agriculture had

its strongest effect at the 360-min/9,890-m scale

(Fig. 2e). In contrast, some cover types exhibited

marked differences in characteristic scale between

behavioral states. For example, chaparral exhibited a

fine-scale response for all movement states, but an

Fig. 2 continued
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increasingly coarse-scale response for the more con-

servative resource use states (Fig. 2d). Conversely,

riparian exhibited a fine-scale response for all resource

use states, whereas the response was weakest at the

finest scales for all movement states (Fig. 2i).

Behavioral states

Behavioral state had a strong but variable influence

on the magnitude and nature of the effect attributed

to each land cover type. In some cases, the effect

was consistently positive (i.e., exhibiting selection

for the land cover type) or negative (i.e., exhibiting

selection against the land cover type), but the

magnitude of effect (i.e., effect size) varied mark-

edly between definitions of the two behavioral

states. For example, with agriculture and urban,

there was a consistent negative effect and the effect

size was greater for the resource use state compared

to movement, but the effect size generally increased

as the definition of the resource use state became

more conservative, whereas it generally decreased as

the definition of the movement state became more

conservative (Fig. 2e, h). In other cases, the effect

was relatively similar across behavioral states (e.g.,

coastal oak woodland, Fig. 2c, and riparian, Fig. 2i),

indicating that selection for or against some land

cover types may not be that sensitive to choice of

behavioral state. Importantly, in some cases, using

movement points versus resource use points led to

opposite conclusions regarding habitat selection. For

example, with annual grassland, the strength of

effect weakened but remained negative as the

behavioral state moved along the continuum from

the most conservative definition of resource use

(RU5) to the least conservative (RU1)(Fig. 2a).

However, for the movement states, the response

was still weakly negative for the least conservative

definitions, but became increasingly positive for the

most conservative definitions. We observed a similar

pattern of reversal in habitat selection between

behavioral states for barren and chaparral land cover

types (Fig. 2b, d).

Lastly, models based on all data points (i.e., that did

not distinguish between behavioral states) tended to

reflect the average relationship observed across the

continuum of definitions of the resource use behav-

ioral state (Fig. 2). This was perhaps not too surprising

given the disproportionate sample sizes attributed to

resource use versus movement (Table 1), but it has

serious implications for the development of resistance

surfaces intended to reflect resistance to movement for

purposes of connectivity modeling.

Model performance

Regardless of scale or behavioral state, all the models

performed reasonably well (Fig. 3). The lowest

squared CCC was 0.39, or a CCC of 0.62. In general,

the resource use models performed better (mean

squared CCC of 0.924) than the movement models

(mean squared CCC of 0.820). We also observed an

increase in model performance with scale, such that at

the coarsest scale all the models (across all behavioral

states) had a squared CCC [ 0.75. However, both

trends were not entirely consistent.

The multi-scale model generally performed as well

or better than any single-scale model in modeling

selection during resource use or both behaviors

combined; however, for movement data, the single-

scale models at coarser scales tended to perform better

than the multi-scale model (Fig. 3). The squared CCC

for the context-independent multi-scale model was

0.564. Therefore, the context-dependent multi-scale

models clearly outperformed the context-independent

model for all points and all definitions of each

behavioral state with the exception of M5, where

model performance was roughly equivalent (squared

CCC of 0.527).

Sensitivity of resistance estimates

Resistance estimates were highly sensitive to scale.

Holding behavioral state constant, proportional dif-

ferences in resistance ranged from 0 to 245 (or

24,500 %) across scales (Fig. 4). In Fig. 4, each plot

represents either all points or a subset of the points

selected to represent a particular behavioral state.

Within each plot (i.e., holding behavioral state con-

stant), the x-axis represents the extent of available

habitat assessed (representing the data acquisition

interval and corresponding extent of available) and the

y-axis represents various percentiles of the distribution

of absolute proportional difference in resistance

values between the reference surface (the 5-min/250-

m scale as an arbitrary reference) and the surface

estimated at each of the remaining scales. The color

intensity in each cell represents the magnitude of the
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absolute proportional difference (on a natural log

scale) between each surface and the reference surface.

This figure reveals two important patterns. First,

regardless of scale and behavioral state, the extreme

differences in resistance were in the upper 20 % of the

distribution, meaning that a relatively small portion of

the landscape was most sensitive to the choice of scale.

Second, estimates of resistance based on the most

conservative definitions of each behavioral state were

somewhat more sensitive than those based on the least

conservative definitions. Thus, restricting the data to

points clearly representing either movement or

resource use resulted in estimates of resistance that

were highly sensitive to scale.

Resistance estimates were also highly sensitive to

behavioral state. Holding scale constant, proportional

differences in resistance ranged from 0 to 245 (or

24,500 %) between behavioral states (Fig. 5). The

interpretation of Fig. 5 is similar to Fig. 4, but the

reference surface is either all points (Fig 5a, b) or M5

(Fig. 5c). Figure 5 indicates that, across all scales,

estimates of resistance differed more between all

points and movement points than between all points

and resource use points, and in both cases the

sensitivity was greatest at the upper quantiles. Also,

estimates of resistance based on the most conservative

definitions of the two behavioral states were more

different from each other than either one was from all

points. This pattern was generally consistent across all

scales and most evident at the upper quantiles.

Considering both scale and behavioral state, we found

resistance estimates to be slightly more sensitive to

scale than behavioral state.

Given the results from the regression analyses, it

seemed intuitive that the multi-scale model would be

more appropriate for the PSFs and, thus, for the

resistance estimates. Therefore, we evaluated the

sensitivity of resistance to the choice of multi-scale

versus single-scale models for all points and the data

subsets based on the most conservative definitions of

movement (M5) and resource use (RU5). As expected,

resistance estimates were sensitive to the choice of

single- versus multi-scale modeling approaches

regardless of data subset (Fig. 6). The greatest differ-

ences in estimates of resistance were between the

multi-scale model and the finer single-scale models

and at the upper quantiles. In addition, estimates of

resistance for the movement points were more sensi-

tive than either all points or the resource use points.

Lastly, we compared resistance estimates between

the multi-scale context-independent model and the

multi-scale context-dependent model for all points,

M5 and RU5, and observed that resistance estimates

were sensitive to whether context-dependent or -

independent inference was used. As seen in the other

resistance results, differences in resistance estimates

between the two methods were greatest at the upper

quantiles of the resistance distributions (online Appen-

dix 3).

Discussion

Our findings highlight the utility of context-dependent

modeling for PSFs and resistance estimation. With

such modeling, both scale (spatial and temporal) and

Fig. 3 Squared CCC across scales and behavioral states. A high squared CCC indicates good model performance
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Fig. 4 Log proportional

differences in resistance

estimates as measured from

the smallest scale (5 min/

250 m) for models using all

points and Movement 1,

Movement 5, Resource Use

1, and Resource Use 5

points. The y-axis represents

a range of percentiles for the

distribution of proportional

differences. The legend

represents the log

proportional differences.

Warmer colors indicate

larger differences. Please

refer to ‘‘Sensitivity of

resistance estimates’’

section for an in-depth

description of this plot.

(Color figure online)
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behavioral state (e.g. resource use versus movement)

can be used to produce a more detailed, context-

dependent estimation of resource selection and resis-

tance to movement (Dalziel et al. 2008). It has long

been recognized that species respond to their environ-

ment at different scales and that no single scale can

capture the relationship between a species and its

environment (reviewed in Levin 1992). Instead, it is

more realistic to assume there are multiple character-

istic scales along the continuum from feeding site to

species range, and that adopting Wien’s (1989)

‘domains of scale’ concept allows for more flexibility

in modeling the true scales at which a species responds

to its environment. By examining a range of scales, we

found multiple characteristic scales across land cover

types. For example, pumas in the study area responded

more strongly to annual and perennial grassland,

coastal oak woodland, coastal scrub and riparian areas

at fine scales (250–530 m), to barren areas at mid

scales (2 km), and to agricultural and urban areas at

coarse scales (7.6–9.9 km). This suggests a mostly bi-

modal scale of habitat selection; pumas appear to be

selecting certain land cover types in their immediate

perceptual range, while avoiding large agricultural and

urban areas, reflecting what has been published in the

literature on puma resource selection in coastal

mountain habitat of California (Dickson and Beier

2002; Sweanor et al. 2008; Burdett et al. 2010;

Wilmers et al. 2013).

In addition to identifying a single characteristic

scale for each land cover type, we observed a dramatic

effect of scale on the effect size (i.e., the magnitude of

Fig. 5 Log proportional

differences in resistance at

each scale between models

using a all points and

Movement 5, b all points

and Resource Use 5, and

c Movement 5 and Resource

Use 5. The y-axis represents

a range of percentiles for the

distribution of proportional

differences. The legend

represents the log

proportional differences.

Warmer colors indicate

larger differences. Please

refer to ‘‘Sensitivity of

resistance estimates’’

section for an in-depth

description of this plot.

(Color figure online)
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the regression coefficient and corresponding odds

ratio) for most land cover types. For example, based on

the simple regression model using data representing

the most conservative definition of movement (M5),

the odds ratio for annual grassland was roughly 10

when the scale was 10 min/530 m and decreased to

roughly 2 when the scale was 360 min/9,890 m

(Fig. 2a). Thus, the inferred preference for annual

grassland during movement was dramatically greater

at finer scales than coarser scales. This has implica-

tions for estimating resistance (and modeling connec-

tivity), since this would translate into dramatically

lower resistance to movement if the resistance surface

were derived from finer-scale data than if it were

derived from coarser-scale data. Similar sensitivities

to scale were observed for most land cover types.

One of our more startling findings was a reversal

from preference to avoidance of some land cover types

as the scale varied. For example, based on a simple

regression using data representing the most conserva-

tive definition of movement (M5), the odds ratio for

agriculture was close to zero (indicating strong

avoidance) at the finest scales, increased to roughly

1.3 (indicating a weak preference) at the 30-min/

1,590-m scale, but then decreased to less than one

(indicating avoidance) at scales beyond 60 min/

2,820 m (Fig. 2e). These results have important

implications for inferences regarding habitat selection

(preferred vs. avoided), and, by extension, estimates of

resistance.

Given the above findings, we suggest that context-

dependent modeling should involve an exploration of

Fig. 6 Log proportional

differences in resistance

between the multi-scale

model and each single scale

model for models using all

points, Movement 5 and

Resource Use 5 points. The

y-axis represents a range of

percentiles for the

distribution of proportional

differences. The legend

represents the log

proportional differences.

Warmer colors indicate

larger differences. Please

refer to ‘‘Sensitivity of

resistance estimates’’

section for an in-depth

description of this plot.

(Color figure online)
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multiple scales, echoing previous recommendations

by Wheatley (2010) and Martin and Fahrig (2012).

Though many GPS collar studies may not be intensive

enough to acquire an empirical distribution of move-

ment distances at the 5-min sampling intervals we had

in our study, it should not prevent the examination of

multiple scales. Whether the scales are empirically-

derived or not, a continuum of scales should be used to

approximate the true characteristic scale of response.

Though our definitions of behavioral state were

relatively simplistic, since they relied solely on

displacement distances, our findings provide evidence

that resource use and movement behaviors are likely to

be confounded in most PSF studies. For our study

animals, this appeared to be less of an issue for

resource use inference than movement inference since,

when all points were used, results were often similar to

those obtained via resource use points only. However,

differences were readily apparent when evaluating

movement behavior. This has ramifications when

modeling resistance to movement since, if all points

are used, it may be concluded that a species routinely

avoids a habitat type, when in fact that type may be

tolerated, or even preferred, during movement events.

This may lead to artificially inflated or deflated

resistance estimates for certain land cover types. By

decoupling resource use from movement, we found

that pumas had notably different responses to annual

grassland, barren and chaparral land cover types

depending on their behavioral state. For example,

pumas had a negative response to annual grassland and

barren areas during resource use behaviors, but had a

positive relationship to these land cover types with our

most conservative definitions of movement. Published

RSF studies on pumas have shown only that they avoid

these two habitat types (e.g., Dickson and Beier 2002).

The opposite trend was observed for chaparral, where

for our two most conservative definitions of resource

use, chaparral was preferred, likely due to its use for

day beds, but it was strongly avoided for our two most

conservative definitions of movement. Chaparral

habitat is notoriously difficult for humans to travel

through and it is not unrealistic to assume the same

difficulty would be faced by a puma. Our results based

on resource use points may be biased toward day bed

locations, especially for models based on RU5 points.

Parsing out daybed locations, from resource use, from

movement may reveal further important puma-habitat

relationships. Though we removed GPS points that are

prone to large spatial errors, small errors may have

introduced some bias in our behavioral state defini-

tions, particularly for RU5.

Regardless of behavioral state, we found that our

study animals largely avoided agricultural and urban

areas. However, these areas were avoided more

strongly during resource use behavior than movement

behavior. As in previous studies, we found that pumas

preferred coastal oak woodland and riparian areas and

avoided coastal scrub (Burdett et al. 2010; Wilmers

et al. 2013), and the use of these three land cover types

did not appear to be sensitive to the choice of

behavioral state. In the same study area, Dickson

et al. (2005) compared resource selection functions for

pumas between static points and travel points and

found that although there were no statistical differ-

ences in habitat selection between the two behavioral

states, that chaparral and riparian vegetation types

were used more often as resting locations than during

travel. Our results reflect these behavioral differences

across all scales for chaparral and across fine scales for

riparian habitat. Though many of our findings regard-

ing behavioral state are intuitive, they demonstrate

that resource selection depends on the behavioral state

of the study animal. Our findings point to a need for

more attention to be paid to the behavioral context of

study animals for future PSF and resistance analyses.

Failing to use the appropriate behavioral state for

the question at hand may be due to the paucity of

empirical definitions for different behavioral states.

Knowing when an individual is using resources or

moving, or simply moving slowly to acquire

resources, may mostly be guesswork, so there is a

need for methods that will aid in the identification of

different behavioral states. Previous studies have

modeled moving versus resting or resource use states

based on movement distance and turning angles

(Morales et al. 2004; Squires et al. 2013) or fractal

dimensions (Fritz et al. 2003). State space models, as

described in Patterson et al. 2008 have also been used

to distinguish behavioral states. For pumas in partic-

ular, there have been studies that have attempted to

identify states of predation and feeding (Ruth et al.

2010; Wilmers et al. 2013) and denning and commu-

nication behaviors (Wilmers et al. 2013) through

cluster sampling. Though these studies are highly

informative, more research on this topic is needed. The

increased use of accelerometers on GPS collars may

aid greatly in this effort (Brown et al. 2012).
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We found resistance estimates were also sensitive

to scale and behavioral state. This sensitivity was

especially evident at the upper quantiles of the

differences in resistance values, indicating that choice

of scale and behavioral state has the largest effect on

*20 % of the landscape. In addition, estimates of

resistance were more sensitive when attempting to

decouple movement points from all points than when

decoupling resource use points from all points. These

results have important implications for modeling

connectivity, because in most cases the objective is

to estimate resistance to movement rather than

resource use.

Though our results are specific only to pumas in

southern California, we believe the lessons learned

herein can be applied to other species and study areas.

Context-dependent models allow for habitat selection

and resistance to be estimated at each cell across the

study landscape based on its location, surrounding

environment, and the behavioral state of the individ-

ual. Thus, the resistance assigned to a particular cover

type will vary across the landscape depending on the

local context. Most current methods for estimating

resistance are context-independent and resistance

estimates are static for each landscape feature (e.g.

land cover type), regardless of its landscape context.

Using context-dependent models to estimate a resis-

tance surface is more computationally intensive than

context-independent methods since they require a

unique resistance value to be calculated for each grid

cell in a landscape. Our results provide empirical

evidence that context-dependent models generally

outperform context-independent models indicating the

extra computational time is warranted. For future

habitat selection and resistance models based on PSFs,

we recommend context-dependent models that

explore a continuum of scales and consider using the

appropriate behavioral state for the question at hand.

Step or path data may be more appropriate than

point data for modeling resistance since it explicitly

represents animal movement. Resource selection

functions from these data would likely be sensitive

to scale and behavioral state as well. However, further

research is needed into this topic to determine the

degree of sensitivity. A further concern with step and

path data is the GPS collar acquisition interval. Step

and path data incorporate information along the

straight line between consecutive telemetry points.

Short intervals may be adequate to represent resource

use for an individual, but as intervals increase, the

straight line between points may be too coarse to

truthfully reflect resource use during movement. We

are currently exploring these questions and the utility

of step and path data for estimating resistance.

In closing, although our findings indicate that

inferences regarding habitat selection and landscape

resistance derived from PSFs are highly sensitive to

both the choice of scale for assessing availability of

habitat and the choice of data filters for decoupling

behavioral states, the following challenges remain

regarding the implications of these findings for

modeling connectivity. First, while we can confirm

that estimates of habitat selection and landscape

resistance derived from PSFs vary among scales and

behavioral states, it is unclear how best to determine

which scale(s) and/or behavioral state is the most

ecologically meaningful for purposes of modeling

connectivity, since it will undoubtedly depend on the

objective and method of modeling connectivity.

However, it seems likely that decoupling movement

from resource use will be important in most applica-

tions, since the former is typically the focus for

connectivity modeling, and that adopting a multi-scale

approach will lead to the most robust inferences.

Second, our findings indicate that while most of the

landscape exhibits some sensitivity to the choice of

scale and behavior, only a relatively small portion of

the landscape exhibits extreme sensitivity, and it is

unknown how this will affect measured connectivity

given the differences among methods such as least-

cost path modeling to identify corridors between a set

of well-defined nodes and a more synoptic modeling

approach based on resistant kernels in which connec-

tivity is evaluated from every location to every other

location. Lastly, our results were based on a single

categorical predictor (land cover) at a single resolu-

tion. Choice of thematic content and resolution and the

spatial grain of the predictor variables will likely also

have a large effect on PSF inference and resistance

estimates.
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